
ADAOA6 114 NORTH CAROLINA UNIV AT CHAPEL HILL F/s 12/
ANTITHETIC VARIATES REVISITED.(U)
%UN SO 0 S FISHMAN. B D HUANG MOO0IS--C-0302

NCLASSIFIED TR-O4 NL

IMEN Inm-mo IME
Ew



OPERATIONS RESEARCH AND SYSTEMS ANALYSIS

ANTITHETIC VARIATES REVISITED

00 George S. Fishman and BaoSheng 0. Huang

r

Technical Report 80-4 -

4 June 1980

x /

UNIVERSITY OF NORTH CAROUNA
AT CHAPEL HILL

DTIC
E'ECTE

21980

DISThIBUtMON STA 14MT A

Approved for public relleose
Distribution Unlimited

80 6 30 093>'



ANTITHETIC VARIATES REVISITED

George S. Fishman and BaoSheng D. Huang

Technical Report 80-4
June 1980

rTL~.N:! J:.L 2.C' i-Z

Curriculum in Operations Research

and Systems Analysis A

University of North Carolina at Chapel Hill

This research was supported by the Office of Naval Research under contract
NOO014-76-C-0302.

Reproduction in whole or in part is permitted for any purpose of the United
States government.



Abstract

This paper extends earlier results in the area of variance reduc-

tion techniques applied to simulation on a computer. In particular, it

views the antithetic sampling technique as a combination of rotation

and reflection sampling on a circle. The covariance structures induced

by the techniques separately and together are derived and conditions

under which they are optimal sampling plans are described. Rates of

convergence for the variance of the sample mean are given for bounded,

continuous and discrete random variables and for unbounded continuous

random variables with special, although commonly encountered, structure.

The advantage of reflection (basic antithetic) sampling is greatest

when a certain symmetry property holds. Rotation-reflection sampling

is superior to rotation sampling alone for continuous functions. In the

bounded continuous case, convergence is faster with rotation-reflection

sampling. In the unbounded continuous case, the results show that

rotation-reflection sampling speeds convergence to the large sample

convergence rate achievable with rotation sampling alone. For the dis-

crete case, rotation sampling does as well with regard to convergence

as rotation-reflection sampling does. However, analysis of the discrete

case shows that a sample size n may be considerably better than another
I I

n although n > n

j.
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1. Introduction

Among statistical topics that arise in computer-based simulation

experimentation, variance reduction has long occupied a central position,

conceptually if not in practice. Variance reduction denotes the objec-

tive of adding procedures to an experiment that allow one to obtain a

specified accuracy for less cost than one can achieve in their absence.

Conversely, for a specified cost, a variance reduction technique enables

one to estimate parameters more accurately than one can without such a

technique. The subject is not new, topical publications having appeared

over twenty years ago (Hammersley and Morton (1956), Hammersley and

Mauldon (1956), and Handscomb (1958)). Most textbooks on simulation

acknowledge the relevance of the issue (e.g., Emshoff and Sisson (1970),

Fishman (1973), Fishman (1978), Gordon (1969) and Naylor et aZ. (1965)).

Unfortunately, attempts to implement this noble concept in practice

have produced few documented cases of success. One notable exception is

Carter and Ignall (1975). No doubt, a principal reason for the paucity

of success arises from the limited development of the variance reduction

technique that has apneared in scholarly journals beyond the original

conceptualization of Hammersley and colleagues. However, evidence of

change is in the air. Recently Lavenberg, Moeller and Sauer (1979)

have attempted to broelden and deepen this development with regard to the

variance reduction technique known as the control variate method as it

applies to discrete event simulation. They enumerate the do's and

dont's of the method with examples that should prove helpful to potential

users. Also, Schruben and Margolin (1978) describe random number stream

manipulation techniques designed to induce variance reduction.

__ __ _ __ __ _
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The purpose of the present paper is to extend the development of

the antithetic variate method of variance reduction, a procedure first

described in Hammersley and Morton (1956). Our results considerably

augment those of earlier work in this area and were motivated by obser-

vations made in Fishman (1979), which described an application of anti-

thetic variates to population growth simulations. Two examples illustrate

conceptually the value of the method of antithetic variates. Firstly,

consider the evaluation of the integral

1

= f g(x) dx
0

where

1

f g2 (x) dx <
0

If an analytical solution is unavailable, one can turn either to numerical

integration or to the Monte Carlo method. Let Ul, .... Un denote a

sequence of independent observations from the uniform distribution on

[0,1] Let U(O,l) denote this distribution. Then an unbiased estimator

of p is

_n
$nn xj=l g(U

with

var n = O(1/n)

so that the standard error of $n decreases as 0(1/n0)

This random sampling is the most elementary application of the Monte

4-7 -W41-
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Carlo method. Variance reduction techniques denote the use of more

advanced sampling designs intended to speed the convergence of var n

In particular, the method of antithetic variates aims at inducing a

joint distribution among U, ... ,Un  for which

var n = 0(1/n)

while preserving the marginal distributions as U(O,1) , which guaran-

tees the unbiasedness of n

As a second example, one may wish to apply variance reduction

techniques to a discrete event simulation. Consider the single server

queue with i.i.d. interarrival times AI,A 2,... , i.i.d. service times

SS 2 " ... ,{Ai} and {Si} independent, and mean waiting time p

From Lindley's equation one has for the waiting time of the ith

completion

Wi  = max(O, Wi_ 1  + S i  - Ai) i = l,...,m

on a run terminated after m completions. Also, let

Wij = max(O, Wil,j + Sij - Aij) j = 1,...,n

denote the waiting time of completion i on the jth of n replica-

tions. As an estimator of j one has

n
lm,n n jl "

where

m W..
*jJ iM 1 ij
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If replications are independent, then var 'm,n = 0(1/mn) . One

possible application of the method of antithetic variates might be to

induce joint distributions among Ai*l, ..., Ai,n and among SiX l ,

S. so thati ,n

var m,n = O(1/m) o(l/n)

Here entries within a column of the array

Al,1 A2 ,1  """ Am~l

A II A 21 ... A '
A1,2 A2,2 " A m,2

A l,n A2,n "" A m,n

are correlated, but entries within a row are independent. A similar

characterization applies to service times.

At this point, it is important to recognize that the direct appli-

cation of the antithetic method to be described here does not necessarily

achieve o(lI/n) in var mn 9 a well-known fact in multivariate Monte

Carlo sampling. For example, see Hammersley and Handscomb (1964).

However, a comprehensive understanding of how the technique works in

univariate problems is a prerequisite to devising methods that will

achieve the desired effect in multivariate problems such as the aforemen-

tioned queueing simulation.

The formal concept of the antithetic variate method first appeared

in Hammersley and Morton (1956). Two subsequent papers, Hammersley and

Mauldon (1956) and Handscomb (1958), demonstrated a certain optimal

, •i iii-! ..
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property of the method. Andr6asson (1972) and Andr6asson and Dahlquist

(1972) introduced the formalisms of group representation as a way of

analyzing potential antithetic sampling designs, and Roach (1973)

attempted to formalize the topic as a transportation assignment

problem. The present paper examines and extends the formulations in

these early papers into an account that sheds considerable new light on

the antithetic method and how it works. Section 2 reviews the formalisms

of the antithetic variate method. Section 3 describes a procedures,

based on rotation, for collecting n > 2 arL'thetic replications that

lead to considerably greater dccuracy per unit cost than the tradition-

ally recommended antithetic variate method for n = 2 allows. It also

describes several examples that reveal how this rotation sampling performs

in selected situations. Section 4 describes a procedure, based on

rotation and refZection, that in certain cases improves on the met!iod

of Section 3 , and illustrates its application to some of the examples

in Section 3 . Section 5 describes one circumstance in which the results

derived here apply to a single server queueing simulation. Both rotation

and reflection sampling designs make clear the value of continued study

of these procedures.

2. Basic Antithetic Sampling

Consider the rindom variables nl,'-'nn and suppose one forms the

quantity h(nl,... Inn) and uses it as an estimate of an i.nknown quantity

. If

n- 1 E h(nl,...,nn) =

the estimator is unbiased. Moreover, a low value for var h(nI ...,nn)

,...,n
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relative to 2 indicates high reliability for h(n ..... n) as an

estimator of p An important subclass of interest is the separable

function

h(nI .... ' n ) = hl(n I) + h2 (n2) + ... + hn(n n )

Given hI ...,h , the marginal distributions of Tl."'.n and the
n

condition E Ij=l h(nj) = n , one can concentrate on choosing a joint

distribution for nl,"',n to promote reliability without concern for

bias. Working in a different, but related, function space facilitates

this choice.

Let nj have the cumulative distribution function (c.d.f.) F.

with inverse distribution function

Gj(x) = inf[y: F.(y) x, 0 x S 1]

Let U, U1, ... , Un denote uniform deviates and define

gj(Uj) = hj[G.(U.)] = hj(nj)

Then the estimator of € of interest is

1 n
Tn = 1 n g.(U.) (1)

n j=l J

One can now restate the variance reduction problem: Given gl' .... gn

with E g.(Uj) = 0 , choose the joint distribution of Ul,...,Un to

minimize var Tn

At this point the Antithetic Variate Theorem becomes salient.

7-
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Theorem 1 . Define Q as the set of all functions for which

i. w(z) is a 1 - 1 mapping of (0,l) onto itself.

ii. Except at a finite number of points z , dw/dz = 1

Also, In infimum var Tn over all possible stochastic and functional

dependences among Ul .... 9Un Then

inf var[ 1 gj(j(U)] = I(2)

wj C Qn j=l

j ,....n

For bounded gl...gn Hammersley and Mauldon (1956) give the proof

for n = 2 and Handscomb (1956) gives the proof for n 2 . Recently

Wilson (1979) has extended the theorem to unbounded gl,...,g,*

Theorem 1 has profound implications. It says that one can achieve

the infimum In by generating a uniform deviate U and applying measure

preserving transformations on (0,1) . As an example, consider the case

of n = 2 , hl(x) = h2(x) and monotone, gl(x) = g2(x) , and G2(y) =

Gl(l - y) . Then the sampling design wl(U) = w2(U) = U gives

T2 : [hI(GI(U)) + h2(2U )
T2 21 2+ 2U)

(3)
i 2gl ( U ) + gl(l - U)]

for which var T2 = 12 In the case h1 (x) = x , gl = G, the minimal

variance implies that ne other method of generating n, and n2 produces

a more negative correlation, a result well kno-n in probability theory.

See Hoeffding (1940), Frechet (1951), Mardia (1976) and Whitt (1976).

It is this form of basic antithetic sapling (Wl(U) = W2(U)) that

t I



textbooks on simulation usually describe.

The problem that now arises is to choose {j(U); j = l,...,n} that

achieves the infimum of var Tn for n > 2 . This is not a simple problem

nor do we claim to have solved it entirely. However, our results are

encouraging. Section 3 describes the concept of rotation samp7ino. and

shows its optimality under specified conditions. Section 4 then combines

basic antithetic sampling with rotation sampling into a rotation and

reflection sampZing scheme that considerably accelerates the convergence

of var T

3. Rotation Sampling

The task of selecting among alternative measure preserving trans-

mations on [0,1) can be simplified at the outset by considering two par-

ticular sets. Firstly, consider transformations of the form

W(U) U 0 U < a

I + -U 8-U <l 0 <5 <I

Figure la shows an example. Since these fail to satisfy point ii of

Theorem 1 , we omit them from further consideration. As a second alter-

native, consider the transformations

W(U) U 0 U < 1

=U + a3 B B U < a2

= U + a 2 2  U < 83

U B3 <U <1

o 7- i: 4 I * - ~ --- - ........ ...- --------
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for fixed 0 < 01 5 82 s 83 < 1 . Note that w covers the unit interval

in non-overlapping segments. Figure lb shows an example. Observe that

mappings of this form have several constants to be evaluated, thereby

adding to the selection problem.

1 
1

W( U) W(u)3

L . " S

1 B1  2 83 1

U U

Figure la Figure Ib

Here we confine our attention to the set of one-parameter transformations

Wj(U) -U 0 ej -U + j 0 % U < I - ej

SU + 8-1 1 - ej S U < 1 (4)

for j - 1,...,n . Since these transformations constitute rotations on the

unit circle, we refer to (4) as rotation sampling. For convenience of

exposition, assume that a) I,...,inn have common c.d.f. F with

corresponding inverse distribution function G and b) h1 (x) = ... = h n(x)

=h(x) . Since gj hjGj , it follows that g1  gn g

7-" - -or -1 ..
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Lastly, assume that c) fI g2 (u) du <
0

One can now write (1) as

in
Tn= I g(U j) (5)Tn n j=l

and let

P(6) = E g(U) g(U 0 O) - 2 (6)

Among the properties that follow from (5) and (6) are

Property 1 (unbiasedness) E g(U * e.)=E g(U) = .

Property 2 . (continuity) The function P is continuous on

Property 3-. (differentiability). If g is continuous on [0,I]

then P is differentiable on [0,1] If g is continuous but

unbounded at u = 1 , then P is differentiable on (0,I) If

l' ..... n have a discrete or mixed marginal distribution, then P has

nondifferentiable points in (0,1)

Property 4-. (periodicity) P(e) = P(e mod 1) 0 C (-', )

Property 52 (symmetry about 0 1/2) P(O) = P(I - e)

Property 6 . (symmetry about 0 = 0 ) P(-6) = P(e)
1

Property 7 (exhaustiveness) f P(e) dO = 0

0
Property 8 (stationarity)

cov[g(U 00 ), g(U S Ok)] = E g(U S 00)g(U S Ok) -k 2 P(Oj Ok)

0 eo.,O .

Property 92 (upper bound) P(O) = P(l) > P(e) O E (0,1)

Property 10 (lower bound) If P is convex on [0,1] , P(1/2) ! P(O).

4 --- -. .--f -- ----- -,,----- .. .. .. ........... -- - - - ~ -~
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These properties, especially those relating to stationarity and symmetry,

prove useful when selecting 6, ...,e n to minimize var Tn

This problem can now be formulated as

n-1 n
minimize V(e1, ... ton) = P( - k)
e19... 9e n  kl j=k+l k

(7)
subject to 0 s el

j s ej+l j = 1 .... n-l

Expression (7) is equivalent to minimization of the average correlation

coefficient of h(ql ) .... ,h(nn) . This formulation leads to Theorem 2.

Theorem 2 . If C is a convex function on [0,1] and symmetric about

z = then for given n 2 z* (1 ) is an optimal solution2'5 n n
of the optimization problem:

n-l n
min w(z) =  C(zi + ... + zj_ l )z=(z l , .... z n-1)  i=l j=i+l

n-1 (8)
subject to Z z. li=l

0 !5 Z i

See the Appendix for the proof.
. j-l

Letting C = P tells us that the assignment j= k=l z = (j-l)/n

for j = l,...,n gives

V(6*1...,16 n) 5 V(6el...,96 n .

The assignment 0n* ..1" 8B) leads to considerable convenience.

n n

V. - -_ _ _ __ _ _ _ _ _ _ ___ _ _ _---- _ _ _ _ __ _ _--
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In particular, {wj(U) : U 0 j = I,...,n} form a finite cyclic

abelian group. Define P P(i - 0.) . Then {g(U 0 6.)} has

the covariance matrix

P0  PI P2  ... P2  PI

P 0 P1 P2  "" P3  P2

P2 P1  PO P1  P2 "'" P4  P3

En (9)

P2 P3  P4  P P

PI P2  P3  ... PO

Here row j+l is row j with elements shifted one position to the right

and the right-most entry in row j assigned to the left-most position in

row j+l A matrix with this property is called a circulant. Its kth

eigenvector is {ei 2Trj k/n ; j = 0,...,n-1} where i = 4T , which gives

the eigenvalues

n-i 2i(-~/

Tkn = P.e2Ti(kl)j/n k = 1,..,n (10)
J=O 'J

In particular, note that the unitar matrix Vn = Il e2-i(k-l)j/n ,

orthogonalizes Pn and that Tk,n = Tn-k+2,n for k = 2,...,n .

Regardless of whether or not 0n is optimal, the resulting symmetry
n*

in P affords an understanding of the rate of convergence of var Tn

with n where

n
Tn 1 G(U0 (j-l)/n)

41n



-13-

Theorem 3 If one uses the transformations {tj; j 1,...,n} , then

var T * 1 P(1) = t /n (=U)n -n j=O n ,n

Proof . Observe that

* 1 n n
var in  nZ Pik-jl

n k=l j=l

where the summation is over all elements in P Since each row of

P contains the same elements, it follows that the summation over all

elements in P is equivalent to
~n-

v T*n-- n-1
var Tn 2  (nn P(P)) (12)n j=o j=O

From (10) with k 1 , it is clear that

var Tn = 1 ,n/n

The convergence problem now becomes one of showing how Tl,n

behaves as n - - under alternative restrictions on g . To put this

problem in perspective, observe that

*rT n-[L P(._) + P( )

r T _= n-iO _ P(l)] - f P(8) do
n  j=1 0

so that one can interpret var Tn as the error incurred in using the

trapezoidal rule to approximate the integration of P over [0,1]

Theorem 4 If one uses the transformation {j; j = l,...,n} then

Tn is the minimum variance unbiased estimator of 4 for fixed n

-t--
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Proof. Consider the estimator

n

n j=1 i j)

n

j=l3

Let c n = (cl ... c n In order for Tn to be the minimum variance

unbiased estimator of , one needs

-n Q T! P-l 1in)- 11
T P-l1

n ~n- -n -n

where 1 is an nxl vector of ones. Since V is a unitary matrix,

we have V 1 = VT and T = v T P V where Tn is a diagonal matrix

with T k,n  in row k and column k . Then

(= T v 1 vT -I 1 IT -1 T 1

-n -'n in -n in) ~n in n , -n

so that Tn = Tn ' which proves the theorem. This result is also noted

in Andreasson (1972).

An equivalent representation for Tn proves useful.
n

Lemma 5.1 . For the rotation scheme n

T n-l

n n g (13
j=0

where is from U(0,1)

41-7 .. . ,- - __-_-"--"------___ _ _____-



-15-

Proof One has

n-i
Tn = g-

j=O n ]

(14)

- m n-II g(U + + g(U + 1)
n j=O n=m+l n

where m = Ln(l - U)J_ Let I 1 - n(l - U) + m nU mod 1 so that

I n-I

T = [,m =  (++n-m-l) + nml g( +J-m-1)
n n [ j=O nj=m+1

1 [ n-i C+ n-m-2 +k(
_ [n- g(n) + -)(15)n k=n-m-l k=O

n-i

k=O

Clearly E is from U(O,1) Expression (13) is identical with the

Hammersley and Morton (1956) formulation for n > 2 . Their convergence

results make use of the Euler summation formula (see Fort 1948, p. 53)

n-I 1 m Bk(x)[q(k- )(1) - q(k-1)(o)]
n 1 q(X n) + f q(t) dt + k kn jO n 0 k=l k! n

+ o(l/nm) (16)

where 0 5 x < 1 and Bk(x) denotes the kth Bernoulli polynomial

for an arbitrary function q whose first m derivatives exist. Note

that (12) and (13) both are amenable to this representation subject

to the existence of the appropriate derivatives.

Bounded g . We now explore the convergence of var Tn  under alterna-

tive restrictions on g Theorem 5 relates to bounded continuous g
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with finite first derivative and Theorem 6 , to piecewise linear g with

finite discontinuities.

Theorem 5 . (Hammersley and Morton 1956). If g C C1[o,l] , then

a. T* (V - 1/2)[g(l) - g(O)] + o(l/n)n n

b. var Tn 12 [g0) 2 + 2
g=) +7 o1l/n)

where V = nU mod 1 is from U(O,1)

Proof . Result a follows from substitution into (16). Since Tn

is unbiased, result b follows directly.

To appreciate the significance of this result, one needs a measure

of variance reduction. One suggested measure is

V e variance without variance reduction technique

R( -n) variance with variance reduction technique

Then for rotation sampling with bounded g

1 *

lim n-VR(On) = 0(I)

so that variance reduction is O(n) .

ExarZe 5.1 . Consider a Beta random variable with c.d.f. F(x) =x

0 5 x s I and 0 < a s 1 so that G(U) = UI/  , Let g = G . Then
_ a*22

T + (V - 12)/n + o(l/n) and var T l/12n 2 + o(l/n 
2)

n c+ I~ n

Observe that for 0 < a < 1 the corresponding p.d.f. is unbounded at

x = 0 . For the bounded case (a > 1) , Theorem 5 does not apply,

and one needs an additional result.

Corollary 5.1 . If g is continuous on [0,1] , then var Tn o(l/n)

Proof . If g is continuous, P C C1[o,1] . Using (16) with P

and x = 0 , one has

. 1 BI(O)[P(l) - P(O)]

var Tn f P(e) de + + o(1/n)
0 n

-TAW x- i
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Since P(O) = P(1) , var Tn = o(1/n)

A somewhat stronger convergence result than Corollary 5.1 is

also possible.

I(

Corollary 5.2 . If g is continuous on [0,1] and f g'(x) dx

then var T = 0(1/n).
n

Halton and Handscomb (1957) make this assertion. Huang (1980)

gives a proof.

Example 5.2 . For the Beta case with c.d.f. F(x) = xa 0 x 1 and

> 1 , one has g'(u) -u
I/ x- I which is unbounded at u = 0 . How-

l 2
ever, f g'(u) du = 1 < so that var Tn 0(1/n 2)0n

Theorem 6 . If g is piecewise linear with finite discontinuities, then

var T* :0/n 2  See the Appendix for the proof.n

Exmple 6.1 . Consider a Bernoulli random variable with inverse distri-

bution function

G(U) = 0 0 U 1-p

= I l-p < U < I

and let g = G . Then P(e) = (p - e)+ + (p + e - 1)+ - p2 0 e 1

where x+ = max(O,x) . Figure 2 shows P(e) . Note that P is convex

but not differentiable at 6 = p, 1-p . Also

* (np mod 1)(I - (np mod 1))

var TN 2 np= integer
n

l always,

4n

so that variance reduction is infinite when np =integer and otherwise
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P(O)

P _ p 2 .2

-P2

0-p

0 p 1 -p 1 0

Figure 2 P(e) for a Bernoulli Random Variable

is O(n) . Moreover, perusal of Table 1 in Fishman (1979) leads to

the conjecture: Given n as the maximal permissible sample size, then

using only n* = min{j: ip mod I is a minimum, j = 1,...,n} leads to

var Tn* < var T. for j = l,...,n . For the more general discrete case,

Huang (1980) shows that if F assumes only rational values, there exist

n's for which var Tn = 0.

Unbounded g . Here we use results from generalized function theory.

Consider the function

q(u) = ua(l _ u)b r(u) a,b s 0 0 5 u 5 1

where q is integrable and the first m derivatives of r exist. Then

Lyness and Ninham (1967) give the extended Euler-Maclaurin summation

formula

or ~ ~ ________________ _
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n-i1

n q(+I') = f q(u) du
j=O 0

+ m-i )O (-a-j,x)+ (_,)j j  "(-b-j,l-x)
Lj=O j_ na+j+l j! nb+j+l

+ O(1/nm) 0 x s 1 (17)

where 0(u) = ( u) br(u), fp(u) : uar(u) and C(',') denotes the

generalized Riemann zeta function. We then have:

Theorem 7 . If g = q and r CC 1 [o,I] , then var Tn O(1/n 2 (1+ a ))
* /

if a b and var Tn = O(l/n2 (l+b)) if a bn

Proof The result follows directly from (17) with m = 1 , x = nU mod 1

and the fact that Tn is unbiased.

Observe that variance reduction if O(n + 2 a) for a s b and

and O(nl+2b) for a b , so that the efficiency of rotation sampling

increases only if a > -1/2 and b > -1/2 . But this is precisely the

condition that assures a finite variance for g .

Example 7.1 . Consider the Pareto distribution with c.d.f F(x) = 1 -x c

c < 0 and inverse distribution function G(U) = (I - U)l/c Also let

g = G . This representation corresponds to a = 0 and b = 1/c in (17)

so that var T* = O(l/n 2(1 + 1/c)) which requires c > -2 (a > -1/2)
n

to achieve a variance reduction.

Other types of unbounded variation are also possible. Consider the

representation

q(u) = uao _ u)br(u) In u 0 u ! 1.

__________ ___ i.



-20-

If q is integrable and the first m derivatives of r exist, Lyness

and Ninham (1967) give the extended Euler-Maclaurin summation formula

n-i 1

n q( - - 0 f q(u) du

, m-1 ,e (x) + i(-a,x) in n i+ eJ+ (_b,l-x)' M)O(l/n )

j=O1 na+j+l nb+J+ 1 1

0 x S 1 (18)

where a,b < 0 and the coefficients e.(x) are independent of n
3B

This gives rise to Theorem 8 .

Theorem 8 . If q = g and r C C1 [l] , then var T* =
* a 2l+b)

O((in n/n)+a) 2) if b a and var T = O(l/n 2 (  ) if b < an

Proof . The result follows from substitution into (18) with m =1

and x = nU mod 1 and from the unbiasedness of Tn

The term O((ln n/n +a)2 ) calls for additional study. Observe

thtlii ln kn n '+aJ 1Tthat l k a (1) knn k2(1+a) . This implies that for suffi-In kn

ciently large n var Tn = O(l/n 2 (l+a)) for a b . Here the logarithmic

singularity slows the convergence rate for moderate n but ultimately

has no limiting effect.

ExampZe 8.1 . Let g(U) = G(I - U) = -ln U so that g(U) is an exponen-

tial random variable with unit mean. Here a = b = 0 , r(u) 1
* 2*

and var Tn = O((ln n/n) 2) . Again for sufficiently large n var Tn

0(1/n 2) , the rate achievable for bounded functions.
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4. Rotation and Reflection Sampling

As mentioned in Section 2 , the use of U and l-U leads to

the most negative correlation between two random variables when h is

monotone. However, the exclusive use of rotation overlooks the benefit

of this transformation. To investigate this alternative more thoroughly,

we consider n = 2m replications, where (4) defines wl(U),... ,m(U)

and
Gj+m(x) = G.(l-x) = G(x) j = 1,... m (19)

Wj+m(U) = W (U) j =1... m . (20)

Although (4) and (20) induce identical c.d.f.'s on nl.....nn , Tj

and nk+m have different joint distributions than the corresponding ones

for nj and nk for j,k = 1,...,m . Also, (20) meets the require-

ments of point i of Theorem 1

Note that gj(x) gj+m(l-x) = g(x) for j = 1,..., m , Also note

that

1 - Wj(U) = 1 - (U 0 .) (1 - U) t (1 - e.)

= 1 - 6. U 0 < U <1-0.

= 2 - 0. - U 1-. < U < 1

One can now write Tn as

T m f(U 0 e) (21)
n m j=l

where

f(U 0 ) = [g(U * ej) + g(l (U e (22)
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The first term in the summand of (22) provides for rotation on the

unit circle; the second provides for re.-Zetion on the unit circle.

Properties of interest include:

Property 11 . (symmetry) f(x) =f(l - x)

Property 12 (unbiasedness) E g(l-e. 0 -U) = E g(U) =- 3

Property 13 (stationarity) cov[g(l-. ID -U)g(1-A6k f -U)] = P( k -

Property 14 (stationarity)

cov[g(u S j)g(l-e k 6 -U)] = Q(k -e6) 6k 6.

= Q(0 - ek + ) ek 5 6,
k k

where

Q(ek - = ) f g(u 0 j)g(l-6 k e0 -u) du -2
01

fg(U ) Og(l -u) du - 2  e = ek - a .0

1 1
Property 15 (exhaustiveness) f Q(O) dO = f Q(l - 9) de = 0

0 0

Property 16 (symmetry) If g(u) + g(l - u) = 2g(1/2) for 0 - u - 1

Q(e) = Q(l - e) for 0 E[0,1] .

Property 17 (lower bound) Q(0) = Q(l) - -P(1)

Property 18 (continuity) Q is continuous on [0,1]

To investigate the simultaneous benefit of rotation and reflection,

it is convenient to study 1 ¢2

R(e) - [2P(e) + Q() + Q(l -0)1= f f(u 1 ) du 2
0

e E [0,1]

- WJ' ____________________________ _____
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Note that

Proery_ 19 (symmetry) R(e) = R(l - 3)

Property_ 20 . (upper bound) R(O) = R(1) - R(j) for iC [O,1]

Property 21-. (differentiability) If g C CI[0,1] , R'(0)

R'(1) = 0 .

Proof:
I-01

R (0) = f f(u) f(u+0)du + fI f(u)f(u+e-l)du -2

0 1-0

1-0 1

R'(0) = f(1-6)[f(O) - f(l)] + f f(u)f'(u+0)du - f f(u)f'(u+0-1)du
0 l-e

1
R'(0) = f(l)[f(O) - f(l)] + f f(u)f'(u)du

0

By property 11, f(O) = f(l) and

1
f f(u)f'(u)du - f(u)f'(u)du
0

so that R'(0) = 0 . By property 19 , R'(0) = -R'(1) . Note that this

result does not necessarily apply if R'(0) does not exist everywhere

on [0,1].

Property 21 prevents us from deriving a result for R comparable

to Theorem 1 . Since R'(0) R'(1/2) = R'(1) = 0 , R is not convex.

Nevertheless, the choice of 0 n has highly beneficial properties which

the next several theorems describe.

7" w.--
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Let
m-1

T -n m = f(U I j/m) n 2m
3=0

so that

1 m-1

*drT - Y R(j/m)
n  m j=0

since it is easily seen that {f(U 6 j/m); j = 0,..., m-l} is a cyclic

stochastic process.

Theorem 9 . If property 16 holds, then var Tn  0

Proof . Since

g(U S j/n) + g(l - (U S j/n)) = 2g(1/2) j 0,... m-l

T =g(1/2) and var T = 0n n

Bounded g .

Theorem 10 . If g :CI[0,1] then

a. Tn = + o(I/n)n

b. var Tn* o(1/n 2)
n

Proof . Let f(u) = q(u) as in (16) and take x = V = nU mod 1

By property 11 f(O) = f(1) so that results a and b follow immediately.

Note that convergence for rotation-reflection is o(l/n 2) as compared

to 0(1/n 2) for rotation sampling alone.

Corollary 10.1 . If g C C2[0,1] , then var Tn : 0(1/n 4)

Proof . Expression (16) gives

** B2 (V)[f'(l) - f'(0)] 24n : _
+

_4_n2_+_o(I/n
2 )
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from which var T - 0(1/n 4) Note that the additional smoothness
n

in g considerably increases the convergence rate.

Theorem 11 . If g is piecewise linear with finite discontinuities,
** /n2

then var T = 0(1/n
n

Proof . See the proof of Theorem 6 in the Appendix with f = R

Exaj)'e .7. . Consider the Bernoulli case of Example 6.1 . Here

Q(e) = (p - 1( - 0) - pl) + _ , from which it follows that 2R(&) =

(p - e) + + (p + e - ) - p2  P(e) . Therefore, var T =n

(np mod 1)(l - (np mod l))/n 2  var T * Also, R is convex so thatn

8n retains its optimal property.

Unbounded g .

Theorem 12 . For g(u) = ua( - u)br(u) where a,b < 0 , g is inte-1** /2la

grable and r E C[0,l] , var Tn = 0(l/n 2(+a)) for a b andn
** 2(+b

var Tn =0(1/n 2 ( b)) for a bn

Proof . By appropriate use of Lemma 5.1 one can show that

**_ n- 1R-[ _.L_ 1-m_ 1
T 2m g( + g (19)n 2m j=O M)

where = mU mod 1 Using (17) leads to the result. Note the

absence of any advantage in terms of the ultimate convergence rate.

Theorem 13 . For g(u) = ua(l-u)bq(u) ln u where a,b 0 , g is

integrable and q CCl[o,11 ,

a. var Tn = O((In n/nl+a) 2) a 5 b < 0** 2(14b)

b. var Tn = 0(1/n 2 (  ) b < a
** in

c. var Tn = 0(/n ) a= b =0

n
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Proof . Results a and b follow directly from (18) and (19) as

in Theorem 8 . Result b arises as a consequence of d(O,x) = -(0,l-x)

The implication of result c for rotation-reflection sampling is that

the large sample convergence rate 0(1/n 2 ) is achieved faster than in

the case of rotation sampling alone. A reexamination of the exponential

case in Example 8.1 illustrates this case.

5. What About Discrete Event Simulation?

In discrete event simulation, the sampling problem incurred usually

is a multivariate one for which it is known that the variance reduction

properties for the univariate case do not necessarily hold. Although

this topic remains for future research, at least one important situation

that arises in congestion property establishes the importance of studying

the univariate case. Let us return to the single server queue simulation

of Section 1 . Let Bi = Sij - Ai for i = 1,..., m waiting times on

replication j = 1,...,n . Then as the traffic intensity approaches unity,

i
Wij WOj + Ik=1 Bkj

so that

W Oj + i= l (m - i + l)Bij

Here W becomes a sum of independent random variables and if one uses

rotation-reflection sampling to generate Bil...Bi,n for each i one

can expect var m,n to show a convergence rate associated with the known

distribution of the Bi. . Preliminary sampling experiments confirm this

result for large traffic intensities.



-27-

6. Conclusions

The results presented here extend those in Hammersley and Morton

(1956) by showing the covariance structures induced by the rotation

and reflection (antithetic) sampling plans, deriving conditions under

which these sampling plans are optimal and by examining the unbounded

case. For the piecewise linear case, the results suggest that a sample

size n can be considerably more desirable than another n' although

ni > n . The results also show that the benefits of reflection sampling

arise principally for symmetric (property 16) functions. The benefit

for nonsymmetric unbounded functions is to speed the rate of var Tn

for moderate n to the ultimate rate achievable with rotation sampling

alone. This is clearly advantageous when working within a limited budget.
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APPENDIX

Proof of Theorem 2 . Lemma A.1 shows that (8) is a convex program-

ming problem. Then we show z* , is a local minimum point.

Since a local minimum point of a convex programming problem is also a

global minimum point, z* is a global minimum point.

Lemma A.1 . Formulation (8) is a convex programming problem.

Proof . For every (i,j) where 1 i - n-l and i+l s j < n

define

(i,jl)()z i + ... + zj_ 1

where

n-l
z C 2 = {(Zl,...,Znl)I1 zk 1, zk Z 0 k = 1,...,n-l}

k= 1

Here a denotes the feasible region of (8) , Z(i'j-l) is a linear

function on 2Z and

C(zi  + ... + zj_ 1 )  = C( i -1l(Z)

is a convex function on 7 . Since the objective function w in (8)

is the sum of convex functions, w is convex on ZZ . Since the con-

straints in (8) are linear, (8) is by definition a convex programming

problem.

Let m and m' be positive integers. Then, convexity gives

mC(a) + m'C(b) a (m + m')C( ma + m'bJ (A.)

for any 0 5 a, b : 1
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Proof of the Theorem . Since z* is an interior point of 71 , there

exists an open neighborhood N(z*) such that

z*C N(z*) c 7

Then z* is a local minimum point if

w(z*) W(Z* + y) (A.2)

for all z + y in N(z*) The value of the objective function at

the perturbed point z* + y is from (8)

w(z* + y) = w[(z I,...,z nl) + (YI " "'Yn-I)]

I n I1) + ] (A.3)-1)

~1 1win + Y ""' n + Yn-I 1  (A.3)

n-lI n-ji i+j-I: Z C( + Z Yt

j=l i=l n t=i

Rearranging the terms in (A.3) , we have

Y) n- C( + yi) + C(n-+ I n-l Yi)] (A.4)

i=l n Y)n i=l

n-2 C(2 + Yi + Yi+l) + Z iC( + i n-lY +

i=2 i=l t=i

and

n-i 1 n-2 2 2 n2

i* i i=2 i=l

nC(-) + nC(-) + ... + nc(--) n odd (A.5)
n n 2n

InC(W1) + nC( ) + +..n+C( n even

L I_
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The last equality of (A.5) follows from the symmetry of C . That is,

C(I) = C(-k) k = l,...,n-I

n n

Now, we show w(z* + y) - w(z*) by proving that

n-k i+k-l k n+i-k-l

i=l t=i i=l t=i

(A.6)
n-k k k k k

C(y) + Z C(- n-) = nC(n-) k 1,...,n-11=l i-l

i+k-I
Let ri k = y Y Repeatedly using (A.2) , we havet=i 

n-k
n-k ri.,
n C(f k+ ri  (n k)C k i-ii=l ik -n +  n-k (A.7)

The symmetry of C gives

k

k k k ri k
C(!- + ri'k) C(- rik) - kC( k (A.8)

i=1 i n i~l

The last inequality of (A.8) also follows from repeated use of (A.1)

Combining the results of (A.7) and (A.8) , we have
n-k kk
Z1 C( k+ r i  + k C (-k+ rik)i~l n ik) i n lk

n-k k
k = ,k k 1il ,k

(n - k)C( k  ) n-k + kC(I k - rnC(-) ,

which proves the inequality (A.6) . From (A.6), (A.5), and (A.4) we have
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W(Z* + y) > W(z*)

for all z + y C N(z*) , which completes the proof.

Proof of Theorem 6 . The proof follows as a consequence of Lemma A.2

Lemma A.2 . Let f be a continuous piecewise linear function on [0,1]

with parameters si, s29 d1 , d2  and c such that

f(x) = [slx + dl)I[Oc)(x) + (s2x + d2)1[c,li(X) 0 , c

where I denotes the indicator function. Then the quantity

f M(O f(1) + f) +nI f() f f(x) dx
n n [ 2 j=l 0

decreases as O(1/n2 )

Proof . Given n, let [i n/n, (in +1)/n] be the subinterval that

includes c Then

n-I f(-I) + f(i+-)
en (f) 1 n n f f(x) dxn n i=O 20

fa Q + f n-)
n 2

- f(n) + f() ]in+

n (2 in+f()+f n i n + l1 C

2nn2c

f ) ( f)+ f(('n )
(fi) (C) ] +(ex) p) 

f(c) ]

=(continued next page)
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- n2 S( 2n)()( i)

i I

Since < c < - + we haven n n

in nc- LncJ l
n n n

and

i +1 i +1- nc
n n
nn

1-(nc - Lncj)

n n

Therefore,

en 2 2 (nc - Lncj)(I (nc - Lnci))

2n

which is zero or decreases as 0(1/n 2)

Extension to a general continuous piecewise linear function

k
f(x) =i=l I[ci 'c i+ l ) (x)[si(x - ci) + di]

is direct.

To prove Theorem 6 one needs only set f(x) = P(x) for 0 5 x 5 1
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